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ABSTRACT 
 

The Anti-Submarine Warfare screen design simulation is a program that 

provides a model for operations in anti-submarine warfare (ASW).  The purpose 

of the program is to aid ASW commanders, allowing them to configure an ASW 

screen, including the sonar policy, convoy speed, and the number of ships, to 

gain insight into how these and other factors beyond their control, such as water 

conditions, impact ASW effectiveness.  It is also designed to be used as a 

training tool for ASW officers.  The program is implemented in Java programming 

language, using the Multi Agent System (MAS) technique.  The simulation 

interface is a Horizontal Display Center (HDC) which is very similar to a 

MEKO200 class Frigate Combat Information Center’s (CIC) HDC.  The program 

uses Extensible Markup Language (XML) files for reading data for program 

scenarios; parameters are initialized before each run time begins.  The 

simulation also provides all the output data at the end of run time for analysis 

purposes.  The program user’s goal, and the purpose of the program, is to 

decrease the number of successful attacks against surface vessels by changing 

the configuration parameters of the ASW screen, to reflect sonar policy, convoy 

speed or number of ships in the simulation.  Ongoing use of the program can 

provide data needed to anticipate required operational needs in future ASW 

situations. 
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I. INTRODUCTION 

A. WHAT IS SIMULATION? 
Simulation is designing a model of an actual system in the computer to 

imitate reality.  By using the simulation, the user learns through doing.  For 

example, a child understands the world by simulating with toys or role-playing.  

During role-play, a child will experiment with interactions between objects--

playing with human and animal figurines or crashing toy cars together and 

observing the results of the collision.  Artificial objects are constructed and the 

roles between them are analyzed to capture the complexity of reality.  A 

computer simulation is a representation of role-playing in a synthetic environment 

or virtual world.1   

Three steps are involved in a simulation: model design and model 

implementation, model execution, and model analysis.  A model design is 

constructed to answer a real world problem.  It is a mathematical model that 

represents a physical object and may be a declarative, functional, constraint, 

spatial or hybrid model.  After construction of a model design, the next step is to 

execute the model.  The model can be executed by creating a computer program 

to run the mathematical model with input parameters and deriving outputs.  

Model analysis explores the relationship between the input parameters and the 

output data.  The analysis tells a story of what happened during a simulation and 

tries to answer a question.   

 

B. WHY DO SIMULATION? 
A simulation is used to study complex, dynamic systems.  Simulation is 

essential in the following cases: 1) the model has many variables and interacting 

components, 2) the relationships between the variables are not linear, 3) the 

model has random variables, 4) the model output is a visual rendering such as a 

                                            
1 Fishwick, P., cited 2004: What is simulation? [Available online at 

http://www.cis.ufl.edu/~fishwick/introsim/node1.html.] 
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three-dimensional computer animation.2  Simulation is used to visualize a large 

variety of non-linear systems and behavior or to replicate the actual system. 

Since a simulation has predictive capabilities the program user can make 

better decisions through optimization and control.  A simulation is a 

computational laboratory experiment that provides the program user with a 

greater understanding of the sensitivities of parameters and scale-up information.  

The simulation can be used to isolate and combine phenomena.3 

 

C. BENEFITS OF SIMULATION IN MILITARY APPLICATIONS 
Simulation used in military operations is an efficient and cost-effective way 

of preparing and training military personnel.  In the modern military environment, 

weapon systems and vehicles are increasingly expensive to operate.  Realistic 

training using actual systems is more difficult due to safety and environmental 

issues.4  Simulation is a better approach to preparing an operation as well 

training military personnel.  Simulations also help military commanders make 

decisions based on model combat and subsequent analysis modeling integrating 

the platforms, sensors, and weapons into a simulated environment.   

 

D. APPLICATION OF SIMULATION FOR ANTI-SUBMARINE WARFARE  
In this research thesis, a model design is used to simulate Anti-Submarine 

Warfare (ASW) operations incorporating High-Value Unit (HVU) protection.  This 

simulation can be used to train ASW officers.  They will become acquainted with 

ASW operations through computer-generated visualization.  ASW commanders 

can analyze the output and configure better ASW screen designs to prepare and 

plan an operation.   

                                            
2 Fishwick, P., cited 2004: Why do simulation? [Available online at 

http://www.cis.ufl.edu/~fishwick/introsim/node2.html.] 
3 Ewing R. and R. Sharpley, cited 2004: Interactive control of large-scale simulations. 

[Available online at http://www.cise.nsf.gov/cns/darema/dd_das/ew_ing/sld010.htm.] 
4 Wilton D. R., 2004: Demonstrating the benefits of simulation in a military environment. J. 

Battlefield Tech.,7, 31-37 
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The simulation program is created in JAVA programming language using 

multi-agent system (MAS) technique.   

 

E. SUMMARY OF CHAPTERS 
The following chapters provide an overview of ASW operations and the 

simulation design model, execution, and analysis.  Chapter II covers general 

knowledge of ASW operations.  Chapter III discusses the conceptual design of 

the simulation program.  Chapter IV gives a description of the agent and object 

interactions and how the user can monitor these interactions.  Chapter V 

discusses analysis and the findings of a sample experiment.  Chapter VI confirms 

the success of the model; suggest possible applications and expansion of the 

model, as well as possible future research. 
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II. ANTI-SUBMARINE WARFARE NOTION 

Anti-Submarine Warfare (ASW) possesses numerous peculiar concepts 

that must be well understood for understanding the proposed simulation.  This 

chapter briefly surveys the ASW concept, as well as the ASW weapons, screen, 

and water conditions.  This chapter is crucial to the understanding of the 

following chapters.  Additional information on ASW can be found in the list of 

references at the end of this thesis. 

 

A. ANTI SUBMARINE WARFARE 
Anti-Submarine Warfare (ASW) is the art and science of eliminating the 

enemy submarines’ effectiveness.  There can be no ASW without submarines.  

Therefore, it is important to first focus on the enemy submarines.5 

 

B. THE THREAT  
Submarines are battle vessels that can dive and maintain a submerged 

position during an attack or other operations.  Submarines have multiple 

operational capabilities and can be used for attacking land targets with long-

range ballistic missiles, for damaging the enemy’s cargo ships, for intelligence 

collection or for deploying SEALS or other special teams.  Additionally, 

submarines can be strategically used during warfare to damage the enemy’s 

commercial transportation lines.   

Two types of submarines are used in modern day warfare: nuclear and 

diesel-electric.  Nuclear submarines make more noise than conventional diesel-

electric submarines.  Nuclear submarines are larger (length 100 to 150 m, beam 

11 to 20 m, drought 8 to 14 m) and tonnage (5,000 to 9,500 tons) and can 

operate thousands of miles away from base.  They can remain submerged for 

more than six months.  Their main power sources are nuclear reactors, which 

provide power allowing them to exceed 30 knots at high speed.  Diesel-electric 
                                            

5 Gardner, W. Jr., 1996, Anti-Submarine Warfare, Brassey’s Inc., p 1. 
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submarines, also known as “small conventional submarines”, weigh 

approximately 500 to 1,500 tons and are mainly for coastal operations.  Their 

small size (length 50 to 70 m, beam 5.5 to 9 m, drought 5 to 8 m) minimizes the 

acoustic target echo strength (TES) signature, which, as a result, is lower than 

that for nuclear submarines.  Conventional submarines have maximum 

submerged speeds of 16 to 24 knots, very low acoustic signatures, and very 

short endurance at maximum speed.  Quite often, a conventional submarine is 

unable to maintain its top speed for more than 15 to 30 minutes.6  

A diesel-electric submarine has to reach periscope/snorkeling (P/S) depth, 

which is 0 to 20 m below the surface, for snorkeling.  It runs its diesel engines to 

charge its batteries, also known as snorkeling.  The snort mast (snorkel), expels 

the exhaust gases and circulates fresh air.  At the same time, messages can be 

relayed by coast support units.  At this time, the submarine is very vulnerable, for 

the crew on a plane or a ship can see the snort mast, and the fumes can be 

detected by IR detection devices.  Today’s radar has the ability to detect snorkels 

from a distance of a couple of thousand yards.  Therefore, submariners snorkel 

several times a day for only short periods, and if possible only at night.  

A submarine’s primary objective is to remain undetected and can be a 

very powerful weapon if it remains undetected.  In order to remain undetected, it 

must be silent and submerged at a depth that minimizes detection by the ASW 

forces.  However, a submerged submarine can be detected via acoustic sensors 

in two ways.  First, a listening device can hear the noises emitted by the 

submarine.  The main engine, auxiliary engines, fans, pumps, propeller, or the 

transmissions from the submarine’s own sonic systems can emit noise.  A 

submarine’s propeller creates cavitations, and this formation and collapse of 

bubbles causes noise.  Using passive devices, noise caused by a submarine can 

be heard.  Second, a device (active sonar) can be used to transmit acoustic 

                                            
6 Armo, K. R., 2000, The relationship between a submarine’s maximum speed and its 

evasive capacity, M.S thesis, Naval Postgraduate School, 72 pp. 
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energy or waves through the water which will be reflected as they hit any object 

in their path.  Returning pulses can be picked up by a receiver of active sonar.7 

 

C. THE ENVIRONMENT 
 

1. Weather Effects 
ASW operations are sensitive to weather conditions.  Turbulent waves and 

swells make detecting noise from a submarine more difficult.  Precipitation and 

wind also add to background noise for the detecting sensor and mask noise from 

a submarine at the same bearing.  Waves can also prevent visibility of the 

submarine mast at the same bearing.  Additionally, the effectiveness of surface 

ship personnel is also lessened by bad weather conditions. 

 

2. Sound Energy and Gradients 
Sound does not travel in a straight line through the sea, because the sea 

is not homogenous.  The velocity of sound varies with temperature, pressure, 

and salinity.  These factors vary at different points and depths of the sea.  With 

the change of velocity, the direction of the sound ray also changes, creating 

considerable bending effects.  In general temperature is the most dominant factor 

in determining sound velocity, since temperature has a variable pattern.  Salinity 

does not vary significantly and pressure increases with depth.8 

Water temperature near the surface is usually higher than the temperature 

at any other depth.  The sun’s rays heat the surface, but because of viscosity, 

cannot reach a depth of more than a few hundred feet.  In the summer, surface 

temperature is at its peak; but, in winter, the highest temperature level can be 

measured at a depth of 20 to 30 feet.  The temperature drops sharply with depth 

after its peak value.  This rapid decline in temperature associated with depth is 

called “thermocline” or “layer.”  The layer near the sea’s surface belt is called a 

                                            
7 Hill, J. R., 1985, Anti Submarine Warfare, 3rd Ed. Naval Institute Press, p 39. 
8 Hill, J. R., 1985, Anti Submarine Warfare, 3rd Ed. Naval Institute Press, p 45. 
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permanent thermocline. In a classic example of a surface belt, sound can travel 

very far in a surface duct.  Under the surface, sound rays bend downward.  When 

the rays reach the thermocline, they bend towards the surface.  At the surface, 

the rays bend back towards the water. Sound diminishes with distance as it 

encounters water molecules which absorb the sound’s energy and turn the sound 

into heat.   

In winter, water temperature is usually constant with depth, called 

“isothermal gradient.”  In that situation, sound rays do not bend, but can travel 

through water and reach great depths.  Hull-mounted sonar is most effective in 

conditions of isothermal gradient.  After an isothermal gradient, temperature 

decreases with depth.  This is the main thermocline.  Sound velocity also 

decreases, and the sound rays bend downward.  Sound velocity reaches its 

minimum at 4,000 feet where the temperature is constant with depth, but the 

velocity increases with pressure.  In this case, a deep sound channel is formed 

between the thermocline and the next increasing sound speed layer where the 

sound rays begin to bend upward.  The sound is trapped in the sound channel 

and can travel long distances (see Figure 1). 
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Figure 1.   Variation of Sound Velocity with Depth (After:Hill,1985, 38) 
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sonar, can reach the sound channel where they bend upward with increasing 

pressure and gather at the surface about 30 to 60 miles from the source as 

shown in Figure 2.  This is known as the convergence zone (CZ).   

 
Figure 2.   Formation of Shadow and Convergence Zone (After: Hill, 1985, 40) 

 

At thermocline or layer, sound rays cannot penetrate and bend up as a 

result of reflection.  A considerable percent of the sound energy turns into heat.  

Below the layer, sound rays are deflected and bend downward due to a change 

in their velocity.  A shadow zone occurs below the layer, into which sonar rays 

cannot penetrate, as a result of reflection and deflection.  The submarine 

positions itself in a shadow zone to prevent detection, as shown in Figure 3.  The 

best approach for gaining contact with a submarine located in the shadow zone 

is to position the sonar below the layer.  Helicopter dunking sonar or depth-

variable-towed-array sonar (DTAS) are used for this purpose. 
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Figure 3.   Bottom Effects and Sonar Below the Layer (After: Hill, 1985, 41) 

 

3.  Sonic Equipment 
Active sonar for detecting sound rays needs to be reflected from the 

target.  Propagation loss is relatively severe during the two-way trip. If a long 

range is needed, lower frequencies are required.  The range is determined by the 

transmitted power.  The more energy transmitted, the greater the reflected signal.  

The relationship between increase in power and range is not linear, but 

logarithmic.  

Passive sonar can detect noise from sea creatures, noise from other 

surface ships in a battle group, and the ship’s own propeller and engines.  A 
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4. Non-Acoustic Detection 
 

a. Magnetic Anomaly Detectors (MAD) 
Since a submarine is made of ferrous metal, it causes a local 

change in the earth’s magnetic field when passing through an area.  The 

magnetic effect can be detected at distances of several hundred feet by Magnetic 

Anomaly Detectors (MAD).  MADs are used by planes or helicopters for detection 

purposes.  

 

b. Infrared (IR) 
Water is circulated through the submarine’s machinery to cool it.  

The circulated water is discharged at higher temperature.  This temperature 

change can be detected by infrared (IR) devices.  Additionally, a submarine’s 

snort mast also provides an infrared (IR) target. 

 

c. Turbulence 
Turbulence results from the displacement of water as the 

submarine moves through it, and this can be noted visually. 

 

d. Electronic Support Measure (ESM) 
Radar and conventional transmissions from a submarine can be 

easily detected by Electronic Support Measure (ESM) devices to obtain the 

bearing of the submarine.9   

 

e. Radar 
A submarine’s snort mast and attack periscope can be detected by 

modern radars.   

 

 
                                            

9 Hill, p 43. 
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D. ASW PROCESS 
Advances in technology, such as satellites, allow for more effective 

tracking of submarines as they transit from the base to operational areas.  A 

satellite can monitor a submarine while it navigates on the surface during its 

transit.  However, after submersion, a satellite cannot detect the submarine.  

Other means of ASW operations are required to eliminate the submarine’s 

effectiveness in the sea. 

Five phases are involved in the ASW process:  

1. Detection 
2. Classification 
3. Localization 
4. Tracking 
5. Kill 

 

1. Detection 
Detection refers to a contact being made with an object, believed to be a 

submarine.  The detection can occur through the following mediums: 

visual/radar, MAD, ESM devices or acoustic.  A maritime patrol aircraft (MPA) 

can be used effectively to search an area, and patrol it for at least six hours, as 

determined by its fuel capacity.  An MPA has several mechanisms for searching 

and detecting a submarine in the area.  The basic means for searching is visual 

detection by the pilots who look for the body or mast of the submarine near the 

surface.  A more effective way of detection is using magnetic anomaly detection 

(MAD).  MAD is a short-range, out of water sensor that has wide coverage 

capability.  Since MAD devices must stay relatively close to the water’s surface to 

be effective, they can only operate from low-flying aircraft.10  An MPA can also 

deploy a passive or active sonobuoy to detect the submarine and monitor its 

acoustic field.  A sonobuoy is a cylindrical device, made of levels of 

hydrophones, which can be programmed to specified depths.  Sonobuoys can be 

active and/or passive, and can be used together for greatest efficiency.  Bearing 

information can be obtained through directional, passive sonobuoys.  Non-
                                            

10 Daniel, D. C., 1986, Anti-Submarine Warfare and Superpower Strategic Stability, 
University of Illinois Press, p 71. 
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directional passive sonobuoys provide contact indication only within their fields.  

When used in tandem sonobuoys can detect a submarine, transmit its range and 

bearing, or both, and provide contact indication information to a receiver on a 

ship or aircraft.   

Ships have different types of sonar to detect submarines.  Hull-mounted 

sonar can transmit acoustic signals.  Ships can also tow a cable with sonar 

arrays.  The depth of the sonar can be set depending on the speed of the ship 

and the length of the cable.  Sonar can be used in passive, active, or passive and 

active modes.  An ASW ship can carry a helicopter installed with dipping sonar.  

One advantage of using dipping sonar is the ability to place the sonar device 

under the layer through which hull-mounted sonar cannot transmit.  The 

helicopter can operate for two to five hours depending on its type.  A 

disadvantage of using helicopters in the ASW operation is their susceptibility to 

weather conditions.  At sea state four, a helicopter can hardly operate in the 

area.  Another disadvantage is that the ship has to maintain at the same speed 

and course as the wind while the helicopter takes off and lands. 

 

2. Classification 
Classification is making a judgment about a contact and assessing 

whether or not that contact is a submarine.  Big sea creatures, sunken ships, and 

sea bottom contours can be very deceptive, since they often resemble submarine 

silhouettes on sonar detection.  The doppler effect, which states that an 

approaching target will, because of its relative movement, return an echo at 

higher frequency is used to analyze contacts.  When a target recedes, the sound 

waves are stretched, and cause the sound's pitch to decrease.  

 

3. Localization 
Localization is a process for obtaining an accurate position for a 

submarine contact.11  The bearing and distance can be obtained through active 

                                            
11 Hill, p 48. 
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sonar with accuracy that depends on the device’s characteristics and range.  

Some hull-mounted active sonar automatically focus on the bearing of the 

contact, instead of omni 360°.  They transmit more acoustic energy through the 

sector.  A submarine can detect the point at which the surface ship obtains an 

active sonar contact because transmissions from active sonar sources result in 

an immediate increase in acoustic energy signaling the ship that the submarine 

has been detected while simultaneously alerting the submarine. 

 

4. Tracking 
Tracking is a process of obtaining an estimation of a submarine’s past and 

future movements for a fire solution.  For passive devices, such as a cross 

bearing is required.  The estimated position accuracy depends on the angle 

between the passive devices and the target. 

 

5. Kill 
Kill is the last phase of the ASW process.  To kill a submerged submarine, 

a weapon needs to be placed into the water.  The weapon needs to explode at a 

distance that is lethal to its target. 

 

E. OPERATIONAL CONCEPTS 
One of the main operations in ASW is convoy or High Value Unit (HVU), 

protection.  As an example, merchant ships need to be protected from enemy 

submarines along their transport routes.  The best way to protect them is to 

group them in a convoy.  The command and control ship in a battle group or the 

biggest replenishment ship can be assessed as HVU units.  Losing these units 

will cause other vessels at sea to suffer severely.  ASW ships form a special 

shield for protection of convoys or an HVU.  Most often, three to six ships with 

hull-mounted active sonar are positioned on the perimeter of the convoy for anti-

submarine defense.   
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A submarine with the intent of sinking the HVU in the convoy will try to 

maneuver into an attack position.  During an attack, the submarine increases its 

risk of being detected, since it breaks silence.  It may decide to withhold an 

attack and risk the convoys reaching its destination safely.  If the submarine 

decides to use the attack periscope or active sonar to obtain an accurate bearing 

and range to the target, it is subject to detection by surface ships. 

 An aircraft can support a battle group by searching the area of interest 

visually, checking for radar and visual sighting of periscopes, using its MAD, 

deploying and monitoring sonobuoys.  Helicopters can use dipping devices at the 

convoy’s outer perimeter.  Fixed wing aircraft or helicopters can be considered 

mobile weapon platforms.  They can be used effectively in the areas outside of 

the surface ships’ torpedo ranges.  These platforms can arrive at the identified 

point of contact in minutes because of their speed advantage.  The time between 

detection of a submarine and attack is very important in minimizing a 

submarine’s probability of escape.  A torpedo in the water launched by a surface 

vessel or aircraft, will cause the submarine to cancel an attack, since the 

submarine’s priority is its own survivability.  The submarine will need to reposition 

itself for another attack or find a new fire solution.   

A friendly submarine can also be used as a detection device, but its own 

safety is compromised when it comes to the surface to obtain relayed messages 

or to transmit information regarding an enemy submarines. 

 

F. WEAPONS 
When a sonar contact is classified as a submarine, a torpedo is launched 

to a computed future position of the submarine.  The calculation of the position 

where the torpedo enters the water and the required course and speed for the 

attack platform is called fire solution problem.  A light-weight torpedo can be 

dropped from a fixed wing aircraft or helicopter, or launched from a ship.  After a 

modern torpedo is launched, a self-homing operation is initiated by its own 

machinery and propeller.  The torpedoes in NATO country inventories are mostly 
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US origin MK44 and MK46 types.  These torpedo types have been in service 

since the early 1950’s.  The MK44 type is an active homing torpedo with a 

maximum speed of 30 knots; the MK46 is an active/passive homing torpedo with 

a maximum speed of 45 knots.  When an MK46 type torpedo is fired in passive 

mode, it will attempt to obtain a contact by acoustic energy (noise) emitted by the 

submarine’s propellers or machinery.  An active sonar pulse from the submarine 

will also guide the torpedo to its target.  Both torpedoes’ ranges are between 

3,000 and 8,000 yards.  An Anti-Submarine Rocket (ASROC) is a rocket that is 

attached to a torpedo and can propel it 10,000 yards in the air.  It is very 

important for the torpedo to be launched close enough to the target, since the 

target must be located by torpedo’s sensor.  The torpedo will execute search 

patterns to maximize the probability of submarine detection (see Figure 4).  It will 

continue its search pattern until it exhausts its fuel.  Surface ships near the drop 

point will turn off their active sonar to avoid mutual interference. 

Other types of weapons including depth charges or mortars are used 

against submarines.  A depth-charge is a bomb which explodes at a programmed 

depth and can be launched via rails installed on the deck of a surface ship. 

 
Figure 4.   Active Homing Torpedo Search Pattern 

Helicopter In Dipping 
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Heloxial Search 
A torpedo has a conical acoustic window 
(similar to a searchlight in the dark) 
to acquire its target 
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III. CONCEPTUAL DESIGN 

A. ASW SIMULATION 
This chapter explains the conceptual design of the Anti-Submarine 

Warfare screen that will be used in the simulation.  A conceptual design is very 

important to the process of producing a software program for evaluating a 

specific problem.  This step must be accomplished before any actual program 

code implementation is done, since it helps to clarify goals in the early stage of 

the project.  The conceptual design does not have to contain detail, but must 

exhibit the main characteristics of the model.  However, the final product is often 

different from the conceptual design due to various factors such as resource 

constraints and feedback received. 

The initial conceptual design of the ASW Screen for simulation was 

conceived of as a final project assignment in the “Agent-Based Autonomous 

Behavior for Simulations” course. 

 

B. THE PURPOSE OF THE MODEL 
The purpose of the simulation model is to strategize Anti-Submarine 

Warfare (ASW) operations in order to protect a High Value Unit (HVU).  In the 

simulation, the number of available surface ships with ASW capability will be 

between four and eight.  The program will allow a diagram of surface ships 

protecting an HVU to be displayed on the ASW screen (see Figure 5).  The 

command and control ship in a battle group, or the biggest replenishment ship, 

can also be designated as HVU unit, since losing this unit would be detrimental 

to the operation of other forces at sea.  The surface ships are free to maneuver 

within their assigned sectors.  The objective of the surface ships is to cover their 

sector as well as possible to prevent a submarine from attacking the HVU.  The 

model will help to predict the outcomes of each maneuver by individual surface 

ships and how each ship contributes to the HVU’s defense. 
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Figure 5.   A Typical ASW Screen 

 

The purpose of using the model is to provide answers to the following: 

1. How a change in the convoy’s speed will affect the outcome. 
2. If a better measurement of effectiveness (MOE) value can be obtained if more 

ships are placed in the simulation. 
3. If positioning a ship with towed array sonar (TAS) in front of the sector, and 

apart from the convoy, will be beneficial to the HVU’s protection from 
submarines. 

4. If the frontal sectors are changed: will the ASW Screen effectiveness be 
increased. 
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5. If the parameters of the inner or outer boundaries for any individual ship’s 
sector are changed will the model’s results are changed. 

6. If water conditions will affect the outcome of the surface ships’ effectiveness. 
The model will help the user evaluate how each individual ship’s 

maneuvering, within its sector, affects the other ships’ maneuvers.  The model 

will determine situations when gaps occur between sector borders and whether 

time is sufficient for a submarine to penetrate the screen.  The simulation will 

help the user explore emerging patterns during runtime.  A software laboratory 

will be developed where the issues mentioned above and others can be 

investigated to gain more insight into anti-submarine defense of an HVU. 

The software will use Multi-Agent System (MAS) techniques.  An agent is 

a computer system that is placed in a defined environment and acts 

autonomously within this environment.12  Agents have their own intelligence and 

are able to adapt to situational changes to meet their design objectives.  An 

agent will sense its environment and take required actions to modify that 

environment.  In a Multi-Agent System (MAS), actions of individual agents will 

affect the other agents’ decisions.  Hence, it is very difficult to predict the 

outcome before running the model.  MAS technique is very useful since it 

involves cognition and decision making to map out the complex patterns of 

interactions among the agents.  A software laboratory using MAS techniques is 

capable of surprising even the designer. 

 

C. MAS REQUIREMENTS 
Every MAS involves six elements:13  

1. Environment 
2. Objects 
3. Agents 
4. Rules or Relationship 
5. Operations and Laws. 

 

                                            
12 Wooldridge, M., 2002, Multi Agent Systems, Wiley, p 15. 
13 Ferber, J., 1999, Multi-Agent Systems, Addison-Wesley Inc., p112. 
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1.  Environment 
The simulation is designed to train ASW commanders to configure the 

ASW screen.  The simulation operates assuming, that in the scenario, a surface 

group travels within a defined area to defend the HVU from submarines.  The 

convoy is positioned to maneuver within a strait with no available alternative 

routes due to blockage by enemy sea mines.  The intelligence sources will 

confirm that there are one or two enemy submarines operating in the area.  

The simulation focuses on a rectangular area of 35 x 50 nautical miles 

(NM) (see Figure 6).  The convoy is programmed to bear north.  The surface 

ships in the simulation are ASW capable and have hull-mounted sonar installed.  

They escort the HVU, which does not have ASW capability.  Some surface ships 

are also carriers of ASW helicopters, and are required to stay within their 

assigned sectors; but are free to set their courses and speeds.  The main force’s 

initial position is at the southern edge of the ASW area. 

The program’s user can choose either one or two submarines for the 

model at the beginning of the simulation.  The submarines’ initial positions, 

speeds, and courses are unknown to the surface group.  When a submarine is 

within a surface ship’s sonar range, detection of the submarine will be 

determined by a probability distribution.  At initialization, submarine is positioned 

randomly within 2/3 of the ASW area, north of the main force’s location.  The 

main purpose for positioning the submarine(s) near the center of the ASW area, 

instead of placing it near the initial position of the surface group is to allow 

sufficient time for an attack.   
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Figure 6.   Operational Area (Not Drawn to Scale) 
 

If two submarines are to be positioned within an ASW area which is 

divided into two equal operational areas each known as a Submarine Action Area 

(SAA).  An SAA prevents mutual interference between submarines to ensure 
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their safety from friendly fire.  Each submarine needs to stay within its assigned 

SAA.  Figure 7 shows two submarines in their operational areas.  The model 

involves only conventional diesel-electric submarines.  Since the main power 

source for a submerged conventional submarine is battery units, the battery 

charge level is the most critical issue when in  a submarine’s operation.  Speed is 

correlated with battery level.  At high speeds, a submarine consumes more 

battery power.  For example, in speeds between three and four knots, a 

submarine can operate 48 hours without snorkeling.  It can maneuver at speeds 

between 18 and 24 knots for 72-50 minutes. Then, its batteries need recharging.  

However, when the submarine maneuvers at high speed; for example 22 knots 

for 30 minutes, its battery charge units drop 60%. 

 
Figure 7.   Locating Two Submarines in the ASW Area (Not Drawn to Scale)  
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The main force’s speed is dependent on the HVU’s speed because the 

surface ships needs to remain within their defined sectors, determined by the 

HVU’s position (see Figure 5).  Furthermore, escort ships have a speed and 

maneuver ability advantage as compared to the HVU.  During runtime, the 

program’s user can change the main force’s course between 0° - 45° at a time.  

The default course of the surface group is 000°.  The user is also able to choose 

a zigzag pattern.  The changes in a surface ship’s course, in a zigzag pattern, 

within specified intervals are shown in Figure 8.  The ship maneuvers in a zigzag 

pattern to complicate the submarine’s torpedo firing calculation, making it more 

time consuming and difficult to lock onto the ship’s position.  The user is able to 

enter the zigzag pattern at the beginning of the simulation.  The main force’s 

(HVU) speed is between 10-14 knots. Escort ships are able to maneuver two 

knots above the HVU’s speed to their maximum speed. 

 
Figure 8.   Example of a Zigzag Pattern for the Main Force (Not Drawn to Scale) 

 

Since a conventional submarine is very quiet, the surface ship’s sonar 

personnel do not detect the submarine when using a hull-mounted sonar in 
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passive mode.  Thus, the surface group uses sonar in active mode to detect the 

submarine.  The program user may also choose a sonar policy which forces 

surface ships to turn off their sonar for specific time intervals.  This kind of sonar 

policy can prevent mutual interference from hull-mounted sonar.  A submarine 

can detect fewer acoustic clues while a restrictive sonar policy is in progress.  

See Table 1 for an example of a sonar policy.   

 
Table 1.   A Sonar Policy Example 

There are two sonar types in the model medium and long range.  An 

active sonar device range depends on its power.   The more acoustic energy a 

sonar device transmits into the water, the better the range.  Maximum range for 

both sonar types is determined by normal distribution.  Table 2 shows minimum 

and maximum range values for both sonar types.  If desired, the user can elect to 

input minimum and maximum sonar ranges for both sonar types at the beginning 

of the simulation.    

 
Table 2.   Sonar Ranges For Hull-Mounted Sonar 
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If the user does not specify sonar ranges, the program will calculate the 

maximum sonar ranges for both types, according to normal distribution within the 

given mean and standard deviations.  See Figure 9 for an example of the 

parameters and normal distribution graphs. 

 
Figure 9.   Sonar Range Distributions for Medium and Long Range Sonar Types 

 

In the program, the submarine operates within periscope/snorkel (P/S) 

depth of between 10 to 15 meters.  The simulation provide water conditions of 

isothermal gradient, usually seen in winter, when there are no layers, and sonar 

rays can reach a depth of 250 meters.  The simulation does not operate when 

there is a layer (thermocline), since the sonar rays cannot penetrate or are 

reflected from the layer.  Submarines located under the layer cannot be detected 

by hull-mounted sonar. 

During the simulation, when the submarine is within the ship’s sonar 

range, it will be detected and destroyed immediately.  In addition, once the 

submarine is detected, it is not able to attack. The submarine will plan a torpedo 

attack to sink the HVU.  A successful torpedo attack will be determined by a 

stochastic process.  Table 3 shows the probabilities for a successful attack 

according to the range.  In the model, a torpedo fired from the submarine 

targeting surface ships should not be considered a particular type.  A modern 
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conventional submarine can have different types of torpedoes loaded in its 

torpedo tubes.  Therefore, the probabilities used in the program for the success 

of an attack have been gathered from different NATO torpedo characteristics and 

abilities with ASW experts’ judgments.  (Since firing a torpedo is complex-the 

sample size for tries is small-the probabilities are far from a validation.) 

For example, if a Type 209 submarine fires a torpedo at a distance of 

11,000 yards; its probability of success is 0.60.  The probability of success in the 

program refers to probability of kill.  The program will calculate a uniform random 

number between zero and one.  If the number is less or equal to 0.60, the attack 

is considered successful. 

 
Table 3.   Probabilities  of  Successful Attack Based on Distance From an HVU 

 

The submarine is free to attack at anytime within its Submarine Action 

Area (SAA), unless its battery level drops to a level insufficient for an attack.  It 

remains submerged during the simulation.  Once it comes to the surface, the 

submarine can be detected by the ship’s radar, regardless of its distance from 

the ship.  The submarine has to maintain the same speed and course during the 

two minutes prior to an attack.  This is the theoretical minimum time needed for 

the firing solution.   
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The submarine’s position is known by the battle group immediately after it 

fires a torpedo.  The closest ship will move toward the submarine’s last known 

position to make contact.  At the same time, the submarine will move away from 

the surface group at maximum speed to avoid precisely located by surface ships.  

In the simulation, the surface ships’ weapon ranges are greater than their sensor 

ranges.  When a ship has localized and tracked a submarine, the submarine is 

destroyed immediately. 

During the simulation, the submarine uses only its passive sonar in order 

to obtain the ship’s location, and never transmits an active sonar pulse. The 

submarine’s passive sonar range is 50,000 yards (half the height of the ASW 

area.  A submarine’s systems can detect a ship’s speed and course within its 

sonar range when a ship’s sonar is in active mode.  If the surface ship’s sensor is 

in passive mode, or if its sonar is off, the submarine can still detect the ship 

within 6,000 yards because the submarine will be able to hear the noise caused 

by the surface ship’s machinery or propulsion. 

 

2. System Objects 
 

a. Rectangular Area Object 
 The ASW area is 35 x 50 nautical miles (NM).  The information 

concerning all the ships as well as the submarines, such as the position, speed, 

course, and sonar situation is stored in the rectangular area object.  The program 

obtains the information concerning the ASW screen and draws the sector lines 

illustrating inner and outer bounds as shown in Figure 5.  The ships will be drawn 

within their sectors and their sonar coverage will be represented by a red circle. 

 

b. ASW Screen Object 
 The ASW screen object stores the information of the sector 

bearings and inner-outer ranges as shown in Table 4. 



30 

 
Table 4.   Sector Information 

 

 At the start of the simulation, the user is required to input the 

number of sectors, the sector bearings, and the inner-outer ranges.  The program 

warns the user if the inner sector boundaries do not add to 360° or if a sector 

begins within another sector’s bearing boundaries.  In addition, the user inputs 

the name of the ships assigned to the sectors.  The outer sectors are not 

required to cover 360°, but outer sectors are expected to start at least from the 

distance where the inner sector ends. 

 

c. Sector Objects 
 Every sector has a unique identification number between one and 

the total number of ships.  Beside its identification number, the sector has the 

beginning and ending bearings and beginning and ending ranges.  It has a string 

value for storing the name of the ship assigned to the sector.   

 The HVU is located at the center of the ASW screen.  A sector is 

drawn on the computer screen using the x-y values of all vertices (see Figure 

10). 
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Figure 10.   The Frontal Sector and its Vertices 

 
 The following is an example of the calculation of the x-y values: 

 The HVU is located at point (200,500), main course is 000° 

 Sector bearing values are between 320°-040°.  Further range 

values are between 4,000-9,000 yards. 

 One yard is represented by one pixel on the computer screen 

 
 The x-y values for the other three points can be computed in a 

similar manner. 

 In the next example, the same values are used except than the 

main course is 030°.  The calculation for point A on the computer screen: 

  
 

d. Referee Object 
 A referee object decides the detection and attack results.  This 

object retrieves the surface ship’s position, its sonar status, and also the 

submarine’s position.  For every time step, a calculation is computed to 

determine whether a submarine is detected within the surface ship’s sonar 

ranges.  When a property change for the detection of surface ship occurs 
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depending on its sonar status, the referee passes along the bearing, distance, 

speed, and course of the surface ship to the submarine.  The referee decides 

whether a submarine torpedo attack is successful or not according to stochastic 

processes depending on the distance from the HVU. 

 

e. Convoy Object 
 A convoy consists of the HVU and the escorting ships.  The HVU’s 

location is calculated with a given speed and time by the following equations: 

 

 For example, if the HVU’s initial position is (200,500) with a course 

of 030° and speed of 14 knots, the next position after t∆  is calculated below. In 

this example, delta time represents one time step which is 30 seconds.  

 

 The x-y calculated here represents the new position of the HVU 

after one time step. 

 

f. Sonar Object 
 Sonar ranges, depending on the type of sonar, are determined by 

normal distribution.  Table 2 shows the minimum and maximum ranges for both 

sonar types.  The initial sonar ranges are computed using the parameters input 

by the user or with the default maximum and minimum numbers (see Table 2), at 

the beginning of the simulation.  After sonar ranges are determined by the 

program, they remain constant and cannot be changed during runtime. 

X= Xo+v, 

Y= Yo + Vt 

V = 14 knots =7 2m/s   => 223 6Ws = 7 9yards/s 

x=200^ ^y-s>r>30x30    ^20f 
118 75 

y = 500 ^lACOs30x30    ^ ^QQ 

204 46 
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g. Submarine Battery Object 
 The submarine battery object stores information on the submarine’s 

battery charge level. For every time step, the battery charge level is updated.  

See Figure 11 and Table 5 for submarine battery endurance levels for various 

speeds.   

 
Figure 11.   Submarine Battery Endurance Graphs 

 
Table 5.   Submarine Battery Endurance Within Various Speeds  
 

 If a submarine with 90% battery capacity level is trying to gain a 

firing position on a main force traveling at 14 knots, it needs to run at 17 knots for 

30 minutes.  If running at a speed of 17 knots, the battery can last for 4.6 hours.  

At the end of 30 minutes, the submarine has used 50% more of its beginning 

battery level.  The new battery level is then 40%. 
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h. Manager Object  
 The manager object positions the ships at the center of their 

sectors and the submarine, randomly, within its SAA at the start of the simulation.  

This object checks or zigzag patterns and triggers he HVU for a course change 

when necessary.  If an interval sonar policy is in progress, the manager orders 

he ship to change its sonar status to parallel  the sonar policy. 

 

i. Simulation Time Object 
 The simulation time (SimTime) object checks the system time and 

synchronously updates elapsed time with system time.  The simulation 

terminates when the main force has exited the ASW area at its north edge or ten 

minutes after a successful attack.  

 

j Data Collector Object 
 A data collector object will retrieves the information required for 

analysis (see Figure 12 for an example of data collector fields). 
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Figure 12.   Data Collector Object Fields 

 

3. Agents 
This model is suitable for a MAS laboratory.  Because the actions of ships 

and submarines are affected by the environment and in turn the environment is 

shaped by the reactions or actions of the surface ships and submarines. 

 

a. Surface Ships 
 Each of the surface ships is an agent that can freely choose and 

act autonomously.  The ships can choose their speeds and courses, but they 

must stay in their assigned sectors.  The ships try to cover the sector as well as 

possible, while remaining within it.  Since a ship’s sensor coverage is relatively 
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Submarine Sun/ival 



36 

small in relation to the sector area, it must find an appropriate search pattern for 

better coverage.  If the ship is to remain at a particular area of the sector for a 

long period of time, the submarine is able to penetrate the gaps caused by 

insufficient coverage.  On the other hand, the submarine needs some time to 

position itself in a good location for a torpedo attack.  In addition, the submarine 

tries to gain a firing position at minimum speed. 

 The ship’s movement pattern is unknown to the submarine unless 

the ship exhibits a repeated pattern.  After some time, the submarine can 

comprehend the ship’s search pattern and move to the optimum position for an 

attack. 

 During the simulation, the ships are able to choose their own 

preferences from a list.  One of the preferences is to divide the sector into four 

quadrants and to visit each of the quadrants to a specified time limit.  Figure 13 

shows how a sector can be divided into four quadrants.   

 
Figure 13.   Dividing a Sector into Four Quadrants 

 

The ship chooses the quadrants randomly.  The model draws a random number 

between one and four with uniform distribution.  Next, the ships determine the 

number of legs and time intervals for the movement according to uniform 

distribution.  The legs are between two and four and the time intervals are 

between six and ten minutes.  For example, the ship moves into quadrant II and 

executes two legs with the total movement lasting nine minutes.  It then heads to 

the edge of the quadrant.  This is point A shown in Figure 14.  Since the ASW  
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screen is dynamic and moves in accordance with the HVU’s course and speed, 

the ship calculates point A; where point A will be in nine minutes and bends for 

this location.  

 
Figure 14.   Ship’s Search Pattern: Visiting Each Quadrant in a Sequence (Not Drawn 

to Scale) 
 

 An easy way to calculate the distance a vessel moves at sea is to 

use the “Three-Minute Rule.”  To compute the distance using the three-minute 

rule, one takes a unit’s speed in knots and adds two zeroes to the speed.  This is 

how far the vessel travels in three minutes.  For example, a vessel moving at a 

speed of 20 knots can travel 2,000 yards within three minutes.  The ship moves 

666.67 yards in one minute and 6,000 yards in nine minutes at a speed of 20 

knots.  If the HVU’s speed is 14 knots, then the ship moves six knots faster.  The 

ship gains 1,800 yards from its initial position relative to the screen.  After nine 

minutes it chooses the quadrant, number of legs, and time interval for the next 

session (see Figure14).  The pattern is quite complex and is very hard for the 

submarine to comprehend.  The pattern can be developed using a rule, stating 

that from top of the hour the ship visits the frontal quadrants (I or II) four times, 

then the rear quadrants (III or IV) , which is determined by random distribution. 
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 Another preference can be a variant of the first, where there is 

cooperation between neighboring ships.  The ships cover the same quadrants in 

their sectors, which may overlap into the sector areas covered by neighboring 

ships.  Obviously, the ships benefit from the coverage by neighboring ships. 

 A ship discards a preference in order to find a better search pattern 

for sensor coverage.  The criterion for discard is the area of the ship’s sensor 

coverage during 40 minutes. If the preference cannot provide a coverage 

criterion above the threshold value, the preference is discarded. 

 The ships do not have knowledge of the exact number of 

submarines in the ASW area.  The program continues after the first detection.  

The simulation ends only when there are two detections. 

 The ship picks the preference and calculates the speed 

requirement and course for the preference and then update the position.  It 

reports the new updated positions for every time step.  The sector is divided into 

square grids for sensor coverage calculation (see Figure15).   

 

 
Figure 15.   Dividing a Sector into Square Grids 

 

 Each grid stores an integer value, either one or zero, and the value 

is initialized at zero at the start of the preference.  During the session, if the ship’s 

sensor covers the grid, the grid’s value is changed to one; otherwise, it remains  
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as zero.  After 40 minutes has elapsed, the program counts the grids valued at 

one or the grids covered by the ship’s sensor.  The effectiveness function for 

coverage is: 

 

 If the number returned from the effectiveness function is below the 

threshold value, the existing preference is discarded and the ship chooses 

another preference.  At the start of a new preference, all the grid values is 

initialized to zero again.  A grid is considered covered if the grid’s center is within 

the ship’s sensor range.  The ship checks the distance between its location and 

the grid’s center location.  If it is less than the sensor range, the grid’s value is set 

to one.  The model only checks the grids which have not yet been covered. 

 

b. Submarine 
 The submarine’s initial position is a random location within the SAA.  

The referee object provides information on any ship within its passive sonar 

range.  When a submarine has made a contact, it is able to get the bearing, 

distance, course, and speed of the target ship.  Some error is expected to occur 

depending on distance. 

 The submarine tries to comprehend the location of the HVU. Since 

an HVU is not an ASW force, it does not have acoustic sensors.  A submarine 

cannot obtain contact with the HVU from long distances due to the fact that it 

must calculate the center of the screen and assume that to be the HVU’s 

location.  The submarine takes the average of the x and y coordinates of the 

ships and moves to the west or east through the convoy location.  It finds a 

rendezvous point at the relative bearing of 045 or 315, at a 10,000 yard distance 

from the center of the screen (See Figure 16).  It calculates the required speed 

and course to the rendezvous point.  Since the surface group can execute a 

zigzag pattern, the submarine needs to update the rendezvous point, calculation, 

required course, and speed in every simulation time step.  At the rendezvous 

tf grids covered 
^lolal grids in the sector 



40 

point, the submarine checks the other ships’ distances.  If the distances from the 

ships are more than 9,500 yards and the ships are not moving towards the 

submarine, it then advances towards the HVU in order to increase its probability 

of a successful attack.  If the distance for ships becomes less than 9,500 yards, 

the submarine decides whether or not to cancel the attack.  When such a 

decision must be considered, if the submarine is at the same course for between 

one to two minutes, a random number between zero and one in uniform 

distribution will be drawn for a decision.  If the drawn number is between 0.0 and 

0.7, the submarine fires the torpedo; if not, it cancels the attack.  The submarine 

can also change its course by reversing and moving away from surface ships.  

The submarine  then increases its speed to 22 knots for 15 minutes or until it is 

17,000 yards away from the nearest ship. 

 
Figure 16.   Submarine Movements Before An Attack 
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 The referee object decides on the ships’ detection of the 

submarine.  At the time of the attack, the submarine’s position is known to the 

surface group.  The referee object also determines whether the torpedo attack is 

successful or not.  If the attack is unsuccessful, or if the submarine does not have 

a chance to attack, it bears north at a speed of 16 knots.  Then the submarine 

calculates the rendezvous point at 045° or 315°, 10,000 away from the center 

point.  (The battery charge capacity must be more than 40% at attack time.)  The 

submarine then moves to the rendezvous point at a speed determined 

considering the time the convoy is expected to reach a position of 225° or 135°, 

10,000 yards from the rendezvous point.  Then the submarine continues with the 

same attack procedure outlined.   

 The submarine attempts to attack, unceasingly, until its battery 

charge level is less than 40% or the convoy is leaving its SAA. 

 

4. Relationships 
 

a. Roles 
 The ships are trying to find a good search pattern with which to 

cover their area.  They can change their preferences if the criteria for coverage 

are not met.  The submarine attempts to attack the HVU while maintaining its 

own survivability option. 

 

b. Goals 
 The goal of the program is to find an optimum screen configuration 

for protecting the HVU.  The configuration’s effectiveness can be measured by 

the number of the times the HVU reaches its destination safely.  During the 

program’s operation surface ships  find their preferences for optimum coverage 

of their sector. 

 The submarine tries to attack the HVU and raise the probability of 

success by advancing towards its target, while it considers its ability to survive 
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counterattacks.  The submarine cancels an attack if it determines that its current 

location is unsafe.  At the end of the simulation, the user obtains the optimum 

design based on how many attempts to transit the region for the given convoy 

speeds and water conditions. 

 

5. Requirements 
The surface ships need to use sonar in active mode to detect a 

submarine.  At the beginning of the simulation, the submarine position is 

unknown to the surface ships.  The referee object notifies the surface ships of a 

detection.  Upon detection, the submarine is destroyed immediately.  After an 

attack, the submarine’s position is known to the surface ships and the referee 

object decides the success of the attack and informs both the surface ships and 

the submarine(s).  The nearest surface ship approaches the submarine’s last 

known position in order to detect the submarine; however, the ship must stay 

within its sector.  The program ends ten minutes after a successful attack.  A final 

determination of the submarine’s status is made by the referee object during this 

ten minute period. 

 

6. Operations and Processes 
The program user inputs the number of ships and submarines and the 

sector information when the simulation starts.  The manager object randomly 

places the submarine within the SAA.  First, the model decides the sonar ranges 

with normal distribution, and then it draws the screen and places the ships at the 

center of their sectors.  The manager object retrieves the zigzag pattern and 

sonar policy.  The ships choose their preferences.  The ships report their new 

positions to the referee object and the referee object checks for mutual detection 

by surface ships and submarine.  Then, the referee object checks the surface 

ships’ sonar status.  Afterwards, the sector objects update their location with the 

convoy’s speed and courses.  The submarine needs to report its updated 

position to the manager for every simulation time step.  The grid objects’ status 

also is updated. 
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The manager object checks the ships’ sonar status and triggers them to 

change their sonar status to either ON or OFF according to the chosen sonar 

policy.  Similarly, the HVU will be forced to alter its course according to the 

zigzag pattern. 

When an attack occurs, the referee object determines whether it is 

successful or not and triggers the nearest ship to move to the submarine’s last 

position.  When an attack occurs, the data collector object obtains the results of 

the attack as well as the submarine battery’s charge capacity.  The data collector 

object also retrieves information from the objects such as the convoy’s speed, 

sonar policy, and number of submarines.   

The program terminates either when all the submarines in the simulation 

are destroyed, or when the convoy leaves the rectangular area, or ten minutes 

after a successful attack.  At the end of the simulation, the statistical data is 

shown on a frame.  If the program user runs the model with the same input 

parameters more than once, the system initializes the parameters automatically.   

 

D. SUMMARY OF LAWS 
The rules of the model include: 

• The submarine’s position is unknown to surface ships in the 
beginning. 

• The ships are free to choose their speeds in their sectors (zero to 
max speed), but they must stay within their sectors. 

• The main force will bear north. 

• When the sonar ranges are initialized, they cannot be changed 
during the runtime. 

• When there is detection, the submarine will be destroyed 
immediately. 

• The referee object will decide whether the attack is successful or 
not. 

• At the time of the attack, the submarine’s position will be known to 
the surface ships and the nearest surface ship will move as close 
as possible to this position. 
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• The ships choose their preferences randomly and discard the 
preferences below the required thresholds. 

• The submarine continues its attacks unless its battery charge level 
is less than 40% or until the surface group leaves its SAA.  (Since a 
conventional submarine needs to come to periscope/snorkel depth 
to recharge its batteries, the batteries can not be recharged during 
the simulation.) 

• The simulation ends when all the submarines are destroyed.  If 
there is a successful attack, the simulation will end ten minutes 
after that attack. 

 

E. HUMAN INTERFACE 
A human interface allows the user to communicate with the computer 

program.  The human interface in the simulation allows the user to input the 

parameters.  The following are frames showing the human interface: 

 
Figure 17.   Input Page 1 

 

Input Page 1 
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Figure 18.   Input Page 2 

 

 
Figure 19.   Input Page 3 

Input Page 2 
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When the program user clicks on “draw the screen” the program displays 

the ASW Screen configuration in a pop-up window (see Figure5).   

 
Figure 20.   Input Page 4 

 
The following output window appears showing the results from the 

simulation: 

 
Figure 21.    Output Table 1 
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Figure 22.   Output Table 2 

 

The simulation outcomes can also be shown as histograms.  Examples of 

the histograms are shown in Figure 23 and Figure 24. 

 
Figure 23.   Number of Successful Attacks with Different Convoy Speeds 
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Figure 24.   Number of Successful Attacks with Different Medium and Long Sonar 

Range Combinations  
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IV. IMPLEMENTED MODEL 

This chapter explains the simulation model and program user interface.  

The user will gain a greater understanding of how to strategize and implement an 

ASW configuration screen by interfacing with the program.  The chapter will also 

describe agent and object interactions and communications and how the user 

can monitor those interactions.   

 

A. STRATEGY FOR CONFIGURATION OF THE ASW SCREEN 
The overall program’s effectiveness is measured by how often the HVU 

safely reaches its destination.  The program user will attempt to find the optimal 

screen configuration for protecting the HVU from submarine attacks.  In 

configuring an optimal ASW screen, the program user needs to consider 1) the 

measure of effectiveness (MOE) value and 2) the cost effectiveness of the 

number of ships used in the configuration. 

The Measure of Effectiveness (MOE) function is: 

 

In the simulation, the user will be able to see the output for each ASW 

configuration and change the parameters of the program to improve the 

configuration.  The most important factors to consider in configuring an ASW 

screen are the number of surface ships, the formation of the ships in the screen, 

the speed of the surface ships, and the ships’ sonar ranges.  However, in many 

military operations, the commanders are limited by the number of ships, the HVU 

maximum speed capacity, and effects of water conditions in sonar ranges.  The 

HVU maximum speed capacity and water conditions are factors that the 

commanders cannot manipulate.  Therefore, the most important variables in 

deciding an ASW screen are the number of ships and their formation on the 

screen.  The number of ships chosen for the configuration will be determined by 

MOE  = 
^of times HVU protected safely 

woftotalfuns 
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whether adding additional ships to the configuration will greatly increase the 

MOE.  The desired MOE will be determined by the commander for the particular 

operation. 

 

B. AGENTS AND OBJECT INTERACTIONS 
 

1. Agent Behaviors 
The surface escort ships will be configured on the ASW screen around the 

HVU.  The ships need to use their sonar in active mode to detect the submarine.  

The submarine’s position will be unknown to the surface group at the beginning 

of the simulation.  The surface ships will bear north in the ASW area. 

The HVU’s course will be 000° unless a zigzag pattern is implemented 

(see Figure 8: An Example of Zigzag Pattern for the Main Force, on page 25).  

The escort ships will be free to alter their speed and course while they attempt 

maximum coverage within their respective sectors.  The ships will choose a 

preference search pattern within their sectors and discard any preference that 

falls below the threshold value for covering its sector (see page 37 for the 

effectiveness function for coverage of a sector).  If the submarine fires a torpedo, 

the submarine’s position at the time of attack will be revealed to the surface 

ships.  The nearest two ships will move to the submarine’s last known position 

(DATUM) at a speed of 21 knots (maximum speed is 25 knots).  They will try to 

obtain a detection and form a barrier between the submarine and the HVU.  The 

DATUM will be in progress for 15 minutes.  At the end of the 15 minute period, 

the surface ships will return to their sectors and move north in the formation.   

The submarine is the most important agent in the simulation.  For a 

conventional submarine, battery level and speed are the most important issues.  

In the model, the submarine will make decision based on remaining battery 

percent; for example, when a submarine decides that it will not have sufficient 

remaining battery unit after the attack, it will cancel the attack and try to distance 

itself from the surface vessels.  
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The submarine will try to attack the HVU with the greatest probability of 

success, by advancing towards its target.  However, the probability of a 

successful attack will be compromised by the submarine’s consideration of its 

survivability.  The submarine can detect surface ships with active sonar at a 

distance of 50,000 yards.  The submarine will calculate a rendezvous point at 

which its initial position will be perpendicular (90° or 270°) to surface ships.  This 

point is the shortest distance between the submarine and the surface ships.  

Hence, the submarine will minimize the distance traveled and its battery 

consumption.  When the submarine arrives at the rendezvous point, it will be 

10,000 yards away and have a bearing of 45° (east or west) relative to the HVU.  

If the submarine detects other surface ships within 7,500 yards—the maximum 

distance for the ship to detect the submarine—before it arrives at the rendezvous 

point, it has two options for attacking the HVU.  The first option is for the 

submarine to attack if the following two conditions are met: 1) its distance from 

the HVU is less than or equal to the maximum torpedo range (17,000 yards) and 

2) it has remained on the same course for the last two minutes (the time required 

for torpedo firing solution).  The second attack option occurs when the submarine 

has remained on the same course for one minute at a distance of 17,000 yards 

from the HVU or less.  In this case, it will draw a uniform random number 

between 0.0 and 1.0.  If the number is less than, or equal to 0.7, then it will 

attack.  If the submarine cannot meet these conditions for a safe attack, it will 

abort.  The submarine’s status will change to “escape” either after an attack or 

when it aborts.  The submarine will alter its course to 180° to move away from 

the surface ships at a maximum speed of 24 knots for at least 15 minutes to 

avoid possible counterattacks.  After 15 minutes, the submarine will calculate a 

new position for another attack when conditions are safe.  The submarine will 

continue to attack unless 1) it has a battery level of less than or equal to 40% 

(required minimum battery level for an escape operation), or 2) the HVU has 

exited the ASW area to the north. 
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2. Object Behavior and Communications 
In real life, many objects are not physical, but are needed to simulate the 

relationships.  A torpedo’s success cannot be known unless it has sunk a ship.  

However, It is not possible to fire a war head torpedo as part of practice.  A 

torpedo might be defective, and can behave other than expected.  There is no 

referee in reality but the object must be created to determine the relationships 

between the ships and the submarine. 

 

a. Simulation Time Object: 
The simulation time object calculates elapsed time synchronously 

with system time. 

For example, if the user inputs into the ASW wizard 13:00 as the 

initial simulation time, the simulation time will be initialized as 13:00:00:000 (first 

field is for hour, second field is for minute, third field is for second, the last field is 

for millisecond).  The simulation time object will continuously obtain system time 

(11:53:25:120) and will be updated using threads.  Threads allow a program to 

efficiently perform multiple tasks simultaneously and enhance performance and 

functionality.14.  The simulation time update thread will run inside the simulation 

time object to calculate elapsed time and update it.  System time will be stored as 

“oldTime”. Then the simulation time update thread will wait (sleep) for 60 

milliseconds.  After the 60 millisecond lapse, the simulation update thread will 

obtain system time and store it as “newTime”.  The simulation time object will be 

updated using the following equations: 

 

                                            
14  Drake, J. D., cited 2004, Introduction to java threads [ Available online at 

http://www.javaworld.com/javaworld/jw-04-1996/jw-04-threads.html.] 

elapsed system time  = newTime - oldTime 

elapsed system time = 11:53:25:180-11:53:25:120 =60 milliseconds 
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The simulation time will be: 13: 00: 01: 800 

Briefly, when one second elapses in system time, the simulation 

time will be forwarded 15 seconds. 

 

b. Screen Object 
The screen object obtains information regarding the sector bearings 

and ranges from the ASW Screen XML file.  It configures the ship objects and 

positions them in the center of their sectors relative to the HVU, which is located 

at the center of the ASW screen.  For example, if the sector has a beginning 

bearing of 0° and an ending bearing of 60° with an inner boundary at 4,000 yards 

and outer boundary at 9,000 yards, then the ship will have a bearing of 30° at a 

distance of 6,500 yards relative to the HVU’s position.   

 

c. Environment Manager Object 
The environment manager object tracks the sonar status by 

obtaining the sonar policy from the XML files.  It will control whether the sonar will 

be active or passive for each ship according to sonar policy in progress. 

 

d. Track List Object 
The track list object registers the ships’ information such as 

identification numbers; names; course; speed; location; and bearing and distance 

(relative to the guide’s ship).  When other objects need to retrieve a surface 

ship’s information they can query the track list object. 

simulafion elapsed 
elapsed simulafion lime = lime        x    system 

turn brne 

120 
elapseos>m^iaf,ont>me=     15     ^ ^rn:ll>seconds) 

elapsed simuMion lime =  idOO millfseconds (1 second + 800 miHiseconds) 
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e. Submarine List Object 
Similarly, the submarine list object retains the submarine’s 

information such as its identification number, name, course, speed, location, 

bearing, and distance.   

 

f. Referee Object 
The referee object determines the detection of the ships and 

submarines.  It checks the ships’ sonar status and the distances between the 

ships and the submarine.  For example, if the ship’s sonar status is active, and 

the distance is within the submarine’s passive sonar range (50,000 yards), then 

the referee object will notify the submarine that it detects a ship.  The submarine 

will then obtain the ship’s location, course, and speed from the referee object.  If 

the ship’s sonar status is passive, the submarine will be able to detect the ship 

within 15,000 yards (due to the propulsion and machinery noise), and it will 

obtain the ship’s location, course, and speed from the referee object.  If the 

submarine attacks the HVU, the referee will determine the attack’s success.  The 

referee will check the distance between the submarine and the HVU at the time 

of the attack (see Table 3: Probabilities of Successful Attack Based on Distance 

from an HVU, page 27).  If a submarine fires a torpedo at a distance of 12,500 

yards from the HVU, the probability of the kill is 0.48.  The referee then draws a 

random number between 0.0 and 1.0 according to uniform distribution.  If the 

random number drawn is less than or equal to 0.48, the attack is considered 

successful.   

 

C. GRAPHIC USER INTERFACE 
 

1. Initializing the Simulation 
At the beginning of the program, the user will input the parameters and the 

required Extensible Markup Language (XML) files.  The program user will be 

prompted by an ASW Input Wizard to input the parameters in three steps.  The 
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user can move back and forth between the three steps by clicking on the “back” 

or “next” buttons while setting the desired parameters.  In the first step, the user 

will input the simulation date and time; local time; and the course, speed, and 

location (latitude and longitude) of the guide ship in the formation (see Figure 

25). 

 
Figure 25.   ASW Input Wizard Step1 

 

The user can input the date-time by either clicking on the roller or the current 

date-time icon.  The default date-time is 1/11/04, 1:00 pm.  The local time range 

is -12 to +12.  The course range is 000° to 359.9°.  The speed ranges from 12 

knots to 21 knots.  The user will input the latitude and longitude for the location.  

For this simulation, the latitude ranges from 38° north to 40° north.  The longitude 

ranges from 24° east to 30° east.  The other ships in the formation will be 

positioned in reference to the guide ship’s location (see ASW screen design).  If 

the user inputs a non-numerical value, the program will not continue to the next 

step.   

In step two, the user will choose the area, screen, zigzag pattern, ship 

characteristics, and output file names (see Figure 26).  (In addition, refer to 

Appendix A for an explanation of the XML files.)  
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Figure 26.   ASW User Input Wizard Step2 

 

In this simulation, the area file consists of four-points which are the edges 

of the rectangular ASW area.  Each point has an assigned letter from A to D with 

latitude and longitude coordinates.  The user can choose from saved ASW 

screen files, or can create a new file with a different set of parameters (see 

Figure 27). 

 
Figure 27.   Choosing a Saved XML File for ASW Screen Configuration 
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Look In:    [3 ScreenData glHI^_^ 
D ASWScreen_001 

D ASWScreen_001 

D ASWScreen_002 

D ASWScreen_004 

D ASWScreen_010 

File Name: ASWScreen 001 mil 

FUesofType:   .XMLFBes 

Open Cancel 
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The user can input the new set of parameters by clicking on the edit icon.  

A frame will appear and the user will be prompted to input the numerical values 

for the number of ships (four to eight), ships’ names, screen value (one to 

number of ships), start bearing (0° to 359.9°), end bearing (0° to 359.9°), start 

range (in yards), end range (in yards), and inner screen (true or false).  The 

starting bearing of one sector should be greater than, or equal to, the end 

bearing of another sector (see Figure 28).  The inner screen sector values should 

add up to 360°.  The outer screen sector begin ranges should be greater or equal 

to the inner sector end ranges.  Inner screen values are “true” when the sectors 

belong to the inner screen; otherwise, they are “false.”  The same numerical 

values and constraints apply to the parameters for the helicopters.  A helicopter 

can be positioned in a similar way within the sectors, as are the ships.   

 
Figure 28.   ASW Screen Edit Frame 
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After setting the parameters, the user must click on the “save” icon to save 

the set parameters.  If the user clicks on the “close” button before saving the 

parameters, the frame will not close and the user will be warned to save the file.  

The user will choose the directory and file name to save the parameters to an 

XML file.  The user can preview the ASW screen, incorporating the chosen 

parameters by clicking on the “preview” icon (see Figure 29).   

 
Figure 29.   Preview of an ASW Screen  
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In step three, the user will choose a file name to save the track 

initialization file (see Figure 30).  The default name is ASWTrack_001.xml.  The 

user may also click on the “assign” icon for a different file name, i.e. 

ASWTrack_Mar6_1710.xml.  Then the user will click on the “create” button and 

proceed to input values for sonar ranges: medium-range sonar values (3,000 to 

7,000 yards) and long-range sonar values (4,500 to 6,800 yards).  In the program 

there are two types of sonar: medium and long range sonar.  The program user 

can input sonar ranges considering seasonal changes. 

For medium range sonar: 

Winter  min: 3,000 yards.  max 7,000 yards. 

Summer  min: 2,000 yards.  max 3,000 yards. 

The maximum range for an active sonar device is affected by two factors: 

1) temperature at depth (gradient), 2) sonar device capability.  Gradient differs for 

the same area in different seasons.  In summer, a hull-mounted active sonar is 

expected to be efficient in a very short distance, where in winter, the range could 

be twice that of summer conditions.  For the program, the user decides the 

maximum and minimum sonar ranges and inputs the values at the beginning of 

the program.  The program user’s personal preferences influence the choice of 

sonar ranges.  A minimum range is the worst case range, and the maximum 

range is the best case range that a sonar device’s detection ability.  Before an 

ASW operation the commander will retrieve these ideal ranges from a 

bathythermograph device. 

A sonar range file name will be chosen similarly to the track initialization 

file.  The user will click on the “create” button to save the sonar range values.   
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Figure 30.   ASW Input Wizard Step3 

 

To end the Wizard, the user will click on the “done” icon.  If the user closes 

the wizard at any time during the three-step initializing of the simulation, the user 

will be warned that closing the wizard will end the program (see Figure 31). 

 
Figure 31.   Warning Frame, Attempting to Close ASW Input Wizard 
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2. Horizontal Display Center 
The horizontal display center (HDC) is a computer-generated version of a 

MEKO200 class frigate Combat Information Center (CIC) HDC (see Figure 32). 

 
Figure 32.   Horizontal Display Center 
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The HDC consists of five different panels: up, left, right, center, and down 

panels. 

The up panel displays information on course, speed, and time for the 

guide ship. 

The right panel has buttons used to choose radar types and magnification.  

The magnification button magnifies the center panel by a power of two (2, 4, 8, 

16, 32, 64, 128) distance in nautical miles.   

The left panel has buttons the user can choose to display the types of 

tracks and own ship indicators, courses, and bearings (surface, underwater, air, 

and electronic warfare tracks).  Simulation time turn buttons are 1 sec, 15 sec, 30 

sec, 1 min, 15 min, 30 min. 

The center panel displays the ASW area and ASW screen in a compass.  

It also displays the ships (tracks) and submarine positions.  The guide ship is 

positioned at the center of the panel and the other ships are positioned in 

reference to the guide ship.   

The down panel displays buttons for determining the time, location, 

contact information, submarine and ship logs, submarine battery capacity level, 

threat, screen and datum.  The time frame displays the date and time of the 

simulation (see Figure 33).  The location frame displays the location of the guide 

ship, in latitude and longitude (see Figure 34). 

 
Figure 33.   Date and Time Frame 
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Figure 34.   Location Frame 

 

The contact information frame shows the identification number, type, 

bearing, distance, location, course, speed, and classification of the other ships in 

the formation (see Figure 35). 

 
Figure 35.   Contact Information Frame 

 

The user can input the ship track identification number to set the default 

contact information or set the information manually.   

The submarine and ship logs display the submarines’ and ships’ status 

and decisions (see Appendix C).  The submarine battery capacity level display 

shows the remaining battery unit and battery percent.  The user can also display 

the track assessment in the center panel by clicking on the threat button.  When 
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the user clicks on the “screen” button, a screen with be displayed in the center 

panel according to the chosen magnification of display center.   

 

D. MONITORING INTERACTION 
 

1. Display Panel 
The display panel shows the ASW configurations of ship and submarine 

objects enclosed within an orange compass.  The diameter of the compass can 

be adjusted by the magnification button.  Surface ships are represented by white 

circles, which is a symbol of friendly surface track (see Figure 36).   

 
Figure 36.   Display Panel  
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The submarine is represented by a red, inverted, half-diamond, which 

symbolizes an enemy, underwater track.  The courses are represented by 

straight lines: blue for surface ship tracks and red for submarine.  The ASW area 

is shown as a square with red sides.  The DATUM is represented by a cyan “X” 

enclosed in a circle.  The DATUM symbol will appear for fifteen minutes in 

simulation time only when the submarine fires a torpedo. 

 

2. Submarine Battery Display 
The submarine battery display has two panels (see Figure 37).   

 
Figure 37.   Submarine Battery Display 

 

The first panel shows the remaining unit represented by a rectangular bar.  

The second panel displays the remaining percent, also represented by a 

rectangular bar.  The remaining unit can be calculated using the battery 

consumption table (see Table 6). 
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Table 6.   Battery Consumption Based on Different Speed 

 

For example, a submarine with 64.0 battery units at the current time, at a 

speed of 21 knots, after 15 simulation time elapsed, the remaining battery unit 

can determined by the following equations: 

 

Remaining unit will be: 64.0 – ((15.0 x 50)/3,600.0) = 63.79 

In a Type-209 submarine which has a total 75 battery units, the remaining 

percent will be calculated by the fallowing equations: 

 

Remaining percent will be: (63.79/75.0) x 100.0 = 85.05% 



67 

 

3. Event Loggers 
The event loggers display text messages for each event change in a tree.  

It will register the event information regarding when and how a change occurs for 

the submarine and ships (see Figure 38). 

 
Figure 38.   Event Logger for Surface Ships 

 

When an event occurs, the event loggers will register a message at the 

end of the leaf for each event category.  The user can learn about event 

categories such as the status, course, speed, detection, DATUM, and sonar 

status for the surface ships by checking the event logger.  The user can also 

investigate the submarine’s status, course, speed, detection, contact loss, move 

for attack, and move for survival (see Figure 39). 
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Figure 39.   Event Logger for Submarine 

 

4. Contact Display 
The contact display is a frame that shows the surface ships’ basic 

information such as identification number, type, bearing, distance, latitude, 

longitude, course, speed, and classification (see Figure 35). 
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V. ANALYSIS 

It is not possible to analyze the space of all simulations that can be run on 

the simulator described in this work, since there are infinitely many such 

simulations.  Thus, a thorough analysis of the program is a project of itself that 

may be addressed in the future.  The purpose of this chapter is to present a 

simple analysis of sample configurations.  The outcomes of the simulation are 

discussed and the findings allow the user to investigate other possible 

configurations. 

 

A. EXPERIMENT WITH SAMPLE CONFIGURATIONS 
 
1. Goal of Experiment 
The experiment explored how the configuration and number of ships affect 

the Measure of Effectiveness (MOE).  The simulation was run with four, five, and 

six ships and each configuration was run for ten times.  The configuration with 

the number of ships that yielded the greatest MOE was chosen.  The positions of 

the ships from the six ships configuration was then changed to see if a different 

configuration with the same number of ships would yield a greater MOE.  The 

parameters (sonar range and convoy speed) for all configurations were identical 

for all configurations.  Medium-range sonar is chosen for all configurations, since 

the majority of Turkish naval ships have medium-range sonar. To further simplify 

the configurations for ease of analysis, a zig-zag pattern was not implemented.  

The submarine began at the same position for all simulations.  From this 

experiment, the program user will be able to determine how the number of ships 

in a configuration affects overall coverage of ASW screen and whether a change 

in the configuration greatly impacts the MOE value. 
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2. Description of Configurations 
The inputted medium sonar range was 3,000 yards (minimum) and 4,000 

yards (maximum) for all the runs.  The main force speed was 14 knots.  The 

ships were searching their sectors at a speed between eight to eighteen knots. 

 

a. ASW Screen Configuration with Four Ships 
In this configuration, four ships (TCG Yavuz, TCG Turgutreis, TCG 

Fatih, TCG Yildirim) were positioned on the inner sector (see Table 7 and Figure 

40).  Each ship is positioned at 90° and their frontal inner sector bounds begin at 

a distance greater than the rear sector bounds.  The frontal sector bounds began 

at a distance of 5,500 yards and rear sector bounds began at a distance of 4,500 

yards.   

 
Table 7.   ASW Screen Configuration with Four Ships 
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Figure 40.   ASW Screen Design with Four Ships  

 
The sonar policy allowed only two ships to have their sonar on 

active mode for a specific time (see Table 8).  From the top of the hour between 

00-10, all ships are in passive mode.  At 10-20 TCG Yildirim and TCG Turgutreis 

sonar were active.  At 20-30 TCG Yavuz and TCG Fatih sonar were active.  At 

30-40 TCG Yildirim and TCG Fatih sonar were active.  Then at 40-00 TCG Yavuz 

and TCG Fatih sonar were active.  This sonar policy allowed only one ship to be 

active in the frontal sectors, while one ship was active in the rear sectors.  The 

sonar policy for the four ships is shown in Table 8. 

 

10,000 yards. 

TCG Yildj 
5,500 yards. 

0*S21 
HVU 

Frontal Sectors 

0*S22  \     - 
TCG YaVuz 

TCG Fatltl >cnn ^   V     '''^''■ 
4,500 yards V   / 

9,000 yards 
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Table 8.   Sonar Policy for Four-Ship Screen Configuration 

 

b. ASW Screen Configuration with Five Ships 
In this configuration, five ships (TCG Yavuz, TCG Turgutreis, TCG 

Fatih, TCG Yildirim and TCG Barbaros) were positioned on the inner sectors 

(see Table 9 and Figure 41).  The frontal ships were assigned to 60° with sector 

bounds beginning at 5,500 yards.  Sectors two and four were positioned at 72°, 

4,500 yards from the HVU.  The ship at the rear sector was positioned at 96° with 

the sector bounds beginning at 4,500 yards from the HVU. 

 
Table 9.   ASW Screen Configuration with Five Ships 
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Figure 41.   ASW Screen Configuration for Five Ships 

 

The sonar policy allowed one, two or three ships to be in active 

mode for ten-minute intervals (see Table 10).  From the top of the hour between 

00-10 only TCG Barbaros was in active mode.  From 10-20, TCG Yildirim and 

TCG Turgutreis were active.  From 20-30, TCG Yavuz and TCG Fatih were 

active. From 30-40, TCG Yildirim TCG Turgutreis and TCG Barbaros were 

active.  From 40-00 TCG Yavuz and TCG Fatih were active.  The sonar policy for 

the five ships is shown in Table 10.   

 
Table 10.   Sonar Policy for Five-Ship Screen Configuration 
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c. ASW Screen Configuration with Six Ships (First 

Configuration) 
In this configuration, five ships (TCG Yavuz, TCG Turgutreis, TCG 

Fatih, TCG Yildirim, and TCG Barbaros) were positioned on the inner sector and 

one ship (TCG Orucreis) was assigned to the outer sector (see Table 11 and 

Figure 42).  The inner sector design was the same as the previous five-ship ASW 

Screen Configuration.  The outer sector began at an angle of 315° and ended at 

45° with sector bounds at 12,000 and 16,000 yards from the HVU. 

 
Table 11.   ASW Screen Configuration with Six Ships 
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Figure 42.   ASW Screen Configuration for Six Ships 

 

The sonar policy allowed one, two or three ships to be in active 

mode for ten minutes intervals (see Table 12).  From the top of the hour between 

00-10, TCG Barbaros and TCG Fatih were in active mode.  From 10-20 TCG 

Barbaros and TCG Turgutreis were active.  From 20-30 TCG Orucreis, TCG 

Yildirim, and TCG Turgutreis were active.  From 30-40, TCG Yavuz and TCG 

Yildirm were active.  From 40-50, TCG Barbaros and TCG Yavuz were active.  

From 50-00 TCG Orucreis and TCG Fatih were active.  Table 12 shows the 

sonar policy for six ships. 
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Table 12.   Sonar Policy for Six-Ship Screen Configuration 

 

d. Second ASW Screen Configuration with Six Ships 
(Second Configuration) 

The ASW Screen configuration was changed to potentially improve 

the MOE from the previous configuration (see Table-13 and Figure 43).  The 

main difference was that two ships are positioned on the outer sector instead of 

one ship (TCG Barbaros and TCG Orucreis).  The outer sectors began at 315° 

and ends at 45°. The sector boundaries were 11,000-15,000 yards from the 

HVU.  The frontal sectors began at 75°, and the rear sectors began at 105°.  The 

frontal sectors were positioned at 5,500 yards, and the rear sectors positioned at 

4,500 yards from the HVU. 

 
Table 13.   ASW Screen Configuration with Six Ships 
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Figure 43.   ASW Screen Configuration for Six Ships 

 

The sonar policy allowed one, two or three ships to be in active 

mode for 10 minutes intervals (see Table 14).  From the top of the hour between 

00-10, TCG Barbaros and TCG Yavuz were in active mode.  From 10-20, TCG 

Orucreis and TCG Yildirim were active.   From 20-30, TCG Orucreis, TCG Fatih 

and TCG Turgutreis were active.  From 30-40, TCG Yavuz and TCG Yildirim 

were active.  From 40-50, TCG Barbaros and TCG Yavuz were active.  From 50-

00, TCG Orucreis and TCG Yildirim were active.   See Table 14 for the sonar 

policy for the six ships. 
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Table 14.   Sonar Policy for Six-Ship Screen Configuration 

 

B. RESULTS 
 

1. Results for Four Ships 
The submarine attacked the HVU 17 times. It was successful nine out of 

seventeen of those attempts.  See Table 15 for a more detail description of the 

attacks.   

 
Table 15.   The Results for Four-Ship ASW Configuration 

 

Submarine attacked at distances between 12,760-13,717 yards with an 

average distance of 13,543 yards (see Figure 44).   
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Figure 44.   Attack Distances in Each Try 

 

The surface ship’s success rate was 47% for protecting the HVU.  The 

MOE was 0.1 (see Figure 45). 

 
Figure 45.   Surface Ships’ Success for the Configuration 

 

The surface ships could not sink the submarine (see Figure 46).  
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Figure 46.   Submarine’s Status at End 

 

 

2. Results for Five Ships 
The submarine attacked the HVU 13 times. The submarine was 

successful at attacking the HVU in three of the thirteen attempts.   See Table 16 

for the details of the results of those attacks.  

 
Table 16.   The Results for Five-Ship ASW Configuration 
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Submarine attacked at distances between 11,265-14,527 yards with an 

average distance of 13,939 yards (see Figure 47).   

 
Figure 47.   Attack Distances in Each Try 

 

The surface ship’s success rate was 77% and the MOE is 0.7 (see Figure 

48). 

 
Figure 48.   Surface Ships’ Success for the Configuration 

 

The surface ships sank the submarine seven times (see Figure 49).  
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Figure 49.   Submarine’s Status at End 

 

 

3. Results for Six Ships (First Configuration) 
The submarine attacked the HVU 14 times.  It was able to successfully 

attack the HVU four out of the fourteen attempts. See Table 17 for the results of 

the attacks.   

 
Table 17.   The Results for Six-Ship ASW Configuration 
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The submarine attacked at distances between 12,201-14,925 yards with 

an average distance of 13,327 yards (see Figure 50).   

 
Figure 50.   Attack Distances in Each Try 

 

The surface ship’s success rate was 71%.  The MOE was 0.6 (see Figure 

51). 

 
Figure 51.   Surface Ships’ Success for the Configuration 

 

The surface ships sank the submarine three times (see Figure 52).  
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Figure 52.   Submarine’s Status at End 

 

 

4. Results for Six Ships (Second Configuration) 
The submarine attacked the HVU 12 times.  It was successful at attacking 

the HVU only two out of the 12 attempts.  See Table 18 for details on the 

success rate of the attacks.   

 
Table 18.   The Results for Six-Ship ASW Configuration 

 

The submarine attacked at distances between 10,128-12,296 yards with 

an average distance of 12,234 yards (see Figure 53).   
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Figure 53.   Attack Distances in Each Try 

 

The surface ship’s success rate was 83%.  The MOE was 0.8 (see Figure 

54). 

 
Figure 54.   Surface Ships’ Success for the Configuration 

 

The surface ships sank the submarine three times (see Figure 55).  



86 

 
Figure 55.   Submarine’s Status at End 

 

C. DISCUSSION 
The most beneficial feature of a MAS technique is that the outcomes of 

the simulation have the capability to surprise even its designer.  As previously 

mentioned, the simulation helps the program user by showing the details and 

events that the user cannot predict or understand without the aid of a 

visualization tool.  The following is a brief analysis of the results of the sample 

configurations. 

The four-ship configuration was the least effective in protecting the HVU 

(MOE = 0.1).  Surface ships protected the HVU only one time. The submarine 

attacked at the distances: first try at 13,543 yards, second try: 8,659 yards.  The 

greatest disadvantage in this configuration was the large sectors assigned to 

each ship.  As a result, the ships were slow to return to their sectors after 

searching the DATUM.  Even though the submarine was unsuccessful with its 

attack, the attack forced the escort ships to leave their sectors for the DATUM 

search.  The submarine was able to penetrate the screen at the sectors where 

the ships had left to search for the DATUM and fire its torpedo within the fatal 

distance of 10,000 yards.  The surface ships could not sink the submarine during 

any run-time.  This was due to the great distance between the attack position and 

the nearest ship’s position.  When the nearest ship arrived at the DATUM, the 

submarine had already moved away.  This configuration would be the worst 
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decision for an ASW commander, since the submarine was able to penetrate the 

configuration at a fatal distance of 10,000 yards for seven times.   

The configuration with five ships provided a MOE value with 0.7.  The 

submarine attacked at two distances : first try at 13,939 yards and second try at 

16,632 yards.  If the submarine failed in its first try, it also failed at its second try.  

The ship was successful in protecting the HVU by creating  a barrier between the 

HVU and the submarine.  The surface ships prevented the submarine from 

approaching the HVU at a close range (14,000 yards) on all attempts except for 

one.  The submarine was forced to fire the second torpedo from a greater 

distance than the first torpedo attack.  The submarine was destroyed seven 

times.  The success rate for the surface ship was 77%. 

The configuration for the six ships was not as effective compared to the 

second configuration (MOE = 0.6).  The submarine attacked at tow distances: 

first try at 13,327 yards and the second try at 14,406 yards.  A user who is not 

familiar with ASW Screen Configuration might predict that increasing the number 

of ships would yield a greater MOE and attack distances.  However, this proved 

not to be the case in this simulation.  The disadvantage of this configuration was 

that the outer sector was so broad (90°) and quite large for a ship to cover. The 

submarine could attack at the opposite corner of the sector of the ship’s position.  

The submarine was sunk only for three times and the success for the surface 

ship was 71%. 

The second configuration with six ships (two ships were assigned to outer 

sectors) provided the highest MOE value within the four sample configurations in 

this experiment (MOE=0.8).  The submarine attacked at the distances: first try at 

12,324 yards and second try at 16,589 yards.  The submarine was not able to 

penetrate the ASW screen several times; therefore, it canceled these attacks 

since it sensed a very close ship but did not have sufficient time for a fire 

solution.  The submarine consumed more battery every time it tried to attack and 

then cancelled since it is moving at 20 knots to assume an attack position.  For 

this reason, the submarine had only one chance for an attack.  The submarine’s 
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decision surprised the user since it risked its own safety and approached the 

HVU for an attack though it had a low battery level.  The submarine fired a 

torpedo at distances of 10,000 to 11,000 yards when it came close to the HVU.  

The submarine was sunk three times and the success rate for the surface ship 

was 83%. 

The program user will decide the best configuration based on the results 

of the model.  The user will consider the MOE value to determine the success 

rate of protecting an HVU.  However, in configuring an ASW screen, the ASW 

Commander must also consider the distance between the submarine and the 

HVU during an attack.  Therefore, the configuration that provides the second 

highest MOE value, but forces the submarine at a greater distance from the 

HVU, could be considered an alternate.  To be able to test whether the MOE 

(0.7) is significantly different from the highest MOE value (0.8) or not, a null 

hypothesis should be defined, and a t test should be applied.  The null 

hypothesis and alternative hypothesis is defined below. 

  

The significance level (α) is 0.05, the standard deviation can be 

determined by the following equation 15 

 

and t-value can be calculated from the following equation: 

                                             
15 Devore, J. L., 1999, Probability and Statistics, 5th Ed. Duxbury Inc., p 366. 

Ho     MOEoa =       MOEo? 

H,    MOEoe  >       MOEoy 

U   = MOE    X  (i-MOE) 

j       x-y - (Pi - P^ 

m      n 
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The t-value for this test is 1.64 and the degree of freedom can be 

determined by the following equation: 

 

The degree of freedom value is 17.6 and .005,17.6t = 1.74  

Since the t-value calculated is less than the t-value from table-value, there 

is not enough evidence to reject the null hypothesis described.  Statistically, there 

is not significant difference between MOE value (0.8) and MOE (0.7).  Because 

of the lack of significant difference, the configuration that provides the second 

highest MOE (0.7) value, because it forces the submarine at greatest distance 

from the HVU, would be chosen.  In this configuration (MOE 0.7) the submarine 

does not penetrate the ASW screen.  At the end of the experiment, the 

configuration for five ships yielded the best overall results for HVU protection. 

Although the MOE (0.7) was not significantly different from the best MOE value 

(0.8), it provided the greatest distance between the submarine and the HVU at 

the time of attack (13,939 yards) and in effect, the best protection. 
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VI. CONCLUSIONS 

The following description outlines the success of the model, possible 

applications in ASW operations, and discusses the need for further research. 

 

A. SUCCESS OF THE MODEL 
The model can be used to aid in ASW military operations for the Turkish 

and NATO Navies.  This is especially true for navy operations that are restricted 

by shallow waters—characteristic of the Mediterranean and Aegean Sea—since 

the shallow depth prevents effective use of Towed Array Sonar (TAS).  The 

simulation allows the user to test parameters that correlate with real life 

variables.  A submarine’s maximum speed and passive sensor range, as well as 

a torpedo’s maximum range, used in the model, are characteristics of current 

submarines.  Hence, the results derived from the simulations will be very similar 

to actual ASW operations.  The model can be used to train ASW personnel and 

aid commanders in deciding and planning an optimal ASW screen configuration 

for ASW operations.   

The model provides military personnel with information on submarine 

movements that they would not otherwise be able to detect in actual ASW 

operations.  For example, they would not know when the submarine begins 

attack procedures.  In actual ASW training, the submarine commander’s decision 

to release attack information is usually delayed (approximately five minutes after 

initial submarine attack) and the submarine’s position is known by the surface 

ships only after the submarine communicates its attack via underwater 

telephone.  Hence, the surface ship personnel know of an attack only after that 

communication.  Following actual training, the submarine commander, surface 

ship commanders, and ASW officers may convene to analyze the outcomes of 

the training.  However, they will not be able to plot all the ships’ and submarines’ 

positions for a thorough analysis.  The simulation model will be a critical tool for 

improving the training and analysis of the effectiveness of an ASW operation.  
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The findings of the training from the simulation model can then be distributed to 

experts who can verify the accuracy of the findings and compare them to actual 

ASW operations. 

 

B. POSSIBLE APPLICATIONS OF THE MODEL 
 

1. Training 
The model can be used by ASW experts as well as someone who has 

very little knowledge of ASW operations.  The model allows the program user to 

experiment with ship configurations to improve the MOE.  A user can attempt to 

configure an optimal ASW screen by employing the following strategies: 

1.  Changing the perimeters and boundaries of the frontal ships. 
2.  Positioning one or two ships to outer sector. 
3.  Changing sonar policy. 
4.  Increasing the convoy speed. 

The model allows the user to obtain information on the conditions when a 

submarine decides to fire a torpedo and when it will cancel an attack.  The user 

will try to force the submarine to fire the torpedo at a distance greater than 

15,000 yards.  A submarine attack at a distance greater than 15,000 yards yields 

the lowest probability for a successful attack.  At the same time, the user will 

consider one element of cost-effectiveness by minimizing the number of ships in 

the configuration. 

 

2. Decision Aid 
The model can be used as a decision aid for planning an ASW operation.  

To configure an ASW screen, the commander must first determine the sonar 

ranges for the simulation.  The commander can obtain the sonar range by first 

collecting stored data from previous years about water temperatures at the time 

of the operation.  The data on the water temperature and sonar range can be 

retrieved from a bathythermograph.  The bathythermograph shows the water 

temperature change with a depth of up to 2,000 meters.  The commander will 

then run the model to obtain the number of the ships and the ASW screen 
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configuration needed for the ASW operation training.  If the previously input 

sonar range values differ from the actual values on the training day, the 

commander will run the model with the actual sonar range values and change the 

number of ships and screen configuration accordingly.  At the end of the training, 

the model outcomes can be compared to actual ASW findings.  The accuracy of 

the outcomes from the simulation can be verified by the actual data from the 

ASW operation. 

 

C. FUTURE WORK 
 

1. Possible Improvements to the Model 
The greatest deficiency in the present model is that it does not simulate 

the water layer and its effect on hull-mounted sonar.  A layer can significantly 

compromise the effectiveness of hull-mounted sonar to detect a submarine under 

the layer.  The active sonar used by surface ships is considerably affected by 

water conditions.  The sonar devices are small and underdeveloped compared to 

the submarine’s sonar devices.  In future models, water conditions can be 

simulated to show their effects on the surface ship’s sonar and its detection of 

submarines.   

In this model, the submarine targets only the HVU for an attack, but in 

reality, every surface ship in the formation is a potential target.  Actually a 

submarine can penetrate the ASW screen by deciding to attack any surface ship 

in the formation.  If the submarine is successful attacking a ship or a ship moves 

away from its coverage sector, the ASW screen’s effectiveness will be 

diminished by gaps in protection.  The submarine can then advance towards the 

HVU for a kill.  As described above, a submarine’s movement in an actual ASW 

operation is more complex than accounted for in the simulation. 
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2. Expanding to Other Military Operations 
The current program does not implement Marine Patrol Aircraft (MPA).  

Using sonobuoys from the MPA and a helicopter can enhance the effectiveness 

of the overall success of HVU protection from submarine attacks. 

The use of the present program can be extended to simulate other types 

of warfare such as Anti-Surface Warfare (ASUW) and Anti-Air Warfare (AAW).  

ASUW and AAW operations are more critical in the case of attacks from enemy 

planes or ships.  The same logic for implementing simulations for ASW can be 

applied to ASUW and AAW. 

In the future, the program’s submarine artificial intelligence or decision 

algorithm can be further developed with advice and guidance from the submarine 

commander.  The commander’s input in developing the submarine’s artificial 

intelligence and algorithm should be covered by national security to protect the 

model from being used by other countries.  This will ensure the security of the 

ASW operation for the particular country using the simulation technology.  
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APPENDIX A EXTENSIBLE MARK-UP LANGUAGE (XML) 
FILES USED IN THE SIMULATION 

A. READING AND WRITING TO EXTENSIBLE MARK-UP LANGUAGE 
(XML) 
In the simulation Extensible Mark-up Language (XML) files were created 

to store data and initialize the parameters.  Data can be stored in an XML file for 

easy access, and XML structures force the data to be stored with a restricted 

format.  To be able to read and write data in XML files the JDOM package is 

used.  JDOM is an open source-library, pure Java API for parsing, creating, 

manipulating, and serializing XML documents.  JDOM source code and the 

instructions for installation can be obtained from JDOM.org web page.16  

XML files used in the program are saved in the hard drive under a folder 

XMLFiles, the default file path is “C:\ASWDesign\ASWDesign\XMLFiles\”.  Each 

file is saved under a different folder.  For example ASWArea files are stored in 

“..\\XMLFiles\AreaData\”, and similarly ASWScreen files are stored under 

“..\\XMLFiles\ScreenData\”  

 

B. TYPES OF XML FILES IN THE SIMULATION 
 

1. ASW Area File 
ASW Area File has two elements : NumberofPoints and Point. A point 

Element is also has three elements: ID, Lat, Long (see Figure 56).  In the 

simulation the ASW Area is 35 x 50 nautical miles (NM). 

                                            
16 Hunter J., cited 2004, JDOM source, [Available online at 

http://www.jdom.org/downloads/source.html.] 
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Figure 56.   ASW Area File Shown in Grid 

 

2. ASW Screen File 
ASW Screen File has four or more sector Elements.  Each sector element 

has eight elements: ID, Name, Screen Value, Starting Bearing, Ending Bearing, 

Staring Range, and Ending Range (see Figure 57). 

 
Figure 57.   Screen File Shown in Grid 

  

3. ASW Zigzag Policy File 
ASW Zigzag file has a date element and a pattern element.  A pattern 

Element has three elements: a start time, end time, and course change from 

main course (see Figure 58). 
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Figure 58.   Zig-zag File Shown in Grid 

 

4. ASW Sonar Policy File 
ASW sonar policy file has 2 elements: Date and Ship, a Ship element can 

be as many as ships used in the simulation. Each ship element has two 

elements: ID, and Active.  Each active element should have a start time and end 

time (see Figure 59). 
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Figure 59.   Sonar Policy File Shown in Grid 

 

5. Ship Characteristics File 
Ship characteristics file has ship elements.  A ship element has Name, 

Type, Hull-number, Call-sign, Sensors, Weapons and Helicopter Elements.   

Each sensor element consists of a sonar element.  A sonar element has three 

elements status, type, and maximum range fields. Each weapons element 

consists of torpedo elements.   A torpedo element has two fields: type and 

quantity.  Helicopter elements have two fields: tail number and status field (see 

Figure 60). 
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Figure 60.   Ship Characteristics File Shown in Grid 
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APPENDIX B GENERATING RANDOM NUMBERS 

A. SIMKIT PACKAGE 
In this simulation, random numbers are generated by Simkit package.  

Simkit is a library for creating a Discrete Event Simulation (DES) models.  The 

Simkit package is written in Java programming language, and used as a teaching 

tool for Masters' students in Operations Research and MOVES at the Naval 

Postgraduate School in the System Simulation course.  Simkit is free software 

and can be obtained from the Simkit home page.17 

 

B. GENERATING RANDOM NUMBERS  
In the simulation, two types of distributions are used for drawing random 

numbers:  

1. Normal Distribution 
2. Uniform Distribution 

 

1. Normal Distribution 
Normal distribution is used to determine the sonar ranges for medium- and 

long-range sonar.  The default maximum and minimum values for medium-range 

sonar are 3,000 to 7,000 yards.  The parameters to generate a random number 

for this type of sonar are mean value: 5,000 and standard deviation: 588.23.  For 

every distribution, a seed value will be generated as a function of system time.   

seed value=(system second x 1000) + system millisecond 

 

2. Uniform Distribution 
Uniform distribution is used to randomly position the submarine within two-

thirds of the ASW area.  It is also used to determine the submarine’s torpedo 

attack success rate.  A uniform random number between 0.0 and 1.0 can be 

calculated from inputting the parameters (0.0 and 1.0) and a seed value.   
                                            

17 Buss A., cited 2004, Simkit home page, [available online at 
http://diana.or.nps.navy.mil/Simkit/] 
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